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Nonlinear processes of generation of three-dimensional vortex structures play an important role in the distortion of a 
laminar flow regime in a boundary layer [1-3]. Using the methods of small linearity theory one can determine the instabilities 

responsible for the formation of three-dimensional structures and describe the initial stage of their evolution (see, for example, 

[4-8]). Another research trend is concerned with the development of methods for direct numerical solution of the Navier-Stokes 

equations. Application of few-mode models allows for the construction of three-dimensional structures slightly above critical 
[9, 10]. The effects of strong nonlinearity are described with the help of complicated numerical schemes which can be realized 

only using supercomputers [11-15]. 
Direct numerical simulation does not always provide insight into the mechanisms of the transition processes or an 

estimate of the degree of their universality. Moreover, it often requires preliminary information obtained from analytical 
consideration. In this connection, development of physical models that reveal the principal qualitative features of the nonlinear 

structures acquires significance. Such models can be based on the application of asymptotic methods that go beyond the scope 

of the weak nonlinearity approximation. 

Formation of three-dimensional vortex structures in a nonlinear critical layer in the presence of a wave triplet with fixed 
wave amplitudes in a flow was studied in [16, 17]. In [18-20] nonlinear models were developed on the basis of the theory of 

"free interaction," in which the wave number of disturbances is assumed small, and a flow regime with a viscous nonlinear 
boundary layer is considered. By passing to large disturbance amplitudes (which is, in fact, equivalent to passage to the inviscid 

limit), in the equations of free interaction, a Benjamin-One equation for two-dimensional nonlinear structures in the boundary 
layer was obtained in [18, 20]. Its soliton solutions were used in [21, 22] to explain the experimental data. The same equation 
was derived later for an ideal model of boundary layer flow with a piecewise linear velocity profile [23]. In [24] a generalized 

Benjamin-One equation was proposed for three-dimensional waves in the boundary layer, which was solved numerically in 

[25]. However, the equation disregarded the three-dimensional flow instability, which induces the growth of small disturbances. 
In the present paper we consider the process of formation of three-dimensional structures as a result of dynamic 

saturation of the three-dimensional nonlinear instability of small initial disturbances. We consider inviscid plane-parallel flow 
in a boundary layer with a smooth velocity profile. Dynamic equations are derived using asymptotic expansions in the small 

wave number. 

1. Boundary-value Problem for Long-wave Nonlinear Disturbances in an Ideal Flow. The equations of the principal 

approximation of the asymptotic theory for long-wave three-dimensional disturbances in a boundary layer obtained in [19] from 
the free interaction approximation can also be derived reasoning from the equations of an ideal flow. Let us consider briefly 
the structure of the asymptotic expansions for this case. 

We write the Euler equation for ideal incompressible fluid flow in nondimensional form, normalizing to the velocity 
of the free flow U~, and the thickness of the boundary layer 

0v (1.1) 
0-7 + ( , ,v , , )  = - v p ,  ( v .  v)  = o. 
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Here v = (v 1, v2, V3) is the velocity field and p is the pressure. We reckon the coordinate x I in the direction of  the primary 

flow; x 3, across the flow; and x 2, along the normal to the wall x 2 = 0. We introduce a small parameter e governing the order 

of  magnitude of  wave numbers of  the disturbance in the x I and x 3 directions. We introduce accordingly the variables x = ex], 

z = ex 3, and y - x 2. To derive the equations of  the principal approximation in e within the framework of the multiscale 

method, it suffices to use a single time ~- = e2t. 

We separate three domains with respect to the coordinate y, as shown in Fig. 1. We use the variable y in the main 

domain I, the variable Y = y/e  in the boundary domain II, and the coordinate S = ey in the external domain III. 

The solution of  (1.1) in the domain I can be written 

~, = v(y)  + ,,,I ') + ~ I  ~) + . . . .  

V3 = ~2 t~2)  + . . . ,  

t'2 = e2r~ 2) + _"3 t,~3) + . . . .  

p = E2p(2) + ~3p(3) + . . . .  
(1.2) 

where U(y) is the velocity profile of  the primary flow (U = 1 when y > 1, see Fig. 1). The expansions for the domain III 

are as follows: 

,,, = v(y)  + E~,~ ~) + . . . ,  

V3 = E2~(32} Jr . . . ,  

We construct the solution in the domain II in the form 

v2 = e2~  2) + . . . ,  
p =  ~2~(2 )+ . . .  

(1.3) 

vl = EV1 (~) + . . . .  v2 = ~zi~z)  + . . . ,  

V3 = EV3 (1) -F . . . ,  jo = ~ 2 p { 2 )  + . . .  
(1.4) 

The structure of  expansions (1.2)-(1.4) corresponds to the class of  solutions describing the saturation regime of nonlinear 

instability. In this class of  solutions the characteristic time scale is determined by the frequency of  harmonic waves of the linear 

problem and is of  the order of  magnitude 1/e 2, while the nonlinear boundary domain II involves the resonance level determined 

by these waves, Hence follow the above normalization of time t and coordinate y in the domain II. 
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To simplify the transformations, we introduce the operators 1~ = iO/Ox and fa = - i0 /0z ,  which will be handled as 

numbers; this rule is understood in the sense of the Fourier transform with respect to x and z. For example, a functional 

relation of  the form gl = F(I~, l~)g 2 means that the Fourier transforms 

fi  [h,2 = gl,2 e x p ( - i k z  - ihz)  dx  dz 
- - o o  - - o ~  

obey the relationship $1 = F(k, h)$ 2. Then matching the expansions for v 2 and p in the domains I and III and the expansions 
for p in the domains I and II, we obtain 

vl ') = A ( z ,  z , r ) U ' ( y ) ,  

[r p ( 2 ) = p ( 2 ) = p =  _ _  

~) = -A.(,, z , ~ - ) u ( y ) ,  

~(2) = exp ( - S ~ / ' ~  ~2)p, 
(1.5) 

where A(x, z, 7") determines the disturbance profile of the longitudinal velocity in the "horizontal" directions x, z; U'(y) = 

dU/dy. The principal term of  expansion (1.2) for v 3 is expressed in terms of  the pressure: v~ 2) = - [QkU(y) ]P .  One can show 

that the deviation of the material surface from the level y = Y0 occupied in the domain I of  undisturbed flow, to within terms 
- e ,  is 
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V - ~Io = - c A .  (1.6) 

The equations for flow in the boundary domain II have the form [19, 20] 

~d'~-~ +~ V(1)~-~1 ~ -  

Ov (I) 

G V.O)~v(~ aP +V(3) + 3 ~ - - = - - ~ ,  

V(,) a~v(')_ oP +V2 (3) + 3 ~ - - 8 7 ,  (1.7) 

They are solved with the boundary conditions for Y --, oo, which follow from the conditions of matching of the solutions in 

the domains I and II in the order e and the impermeability condition at the wall (see also [19, 20]): 

I,'l O) --* U~(Y + A), V(3 ') ~ 0 for V --+ +oo; (1.8a) 

V2 (a) = 0 for Y = O. (1.8b) 

Here U 0 = U'(0). Condition (1.8a) for V~ I) is determined by the behavior of the above function v~ 2) as y --, 0. It follows from 

matching of  the expansions for v 3 that V~ 1) decreases as Y --, oo like 1/Y. As a result, the longitudinal and transverse velocity 

components are of  the same order with respect to e in the domain II and of different order in the domain I. The variable v~ 3) 

can be excluded from (1.7) by integrating the third equation with respect to y taking account of  (1.8b). Therefore, Eqs. (1.7) 
with boundary conditions (1.8b) and relation (1.5) between P and A form a closed boundary-value problem for the domain II. 

It should be note that the integral representation of the relation between P and A given in [19] can be obtained from the 

operator representation by means of the formula for the spectral expansion of a spherical wave (see [26, p. 368]). 
For two-dimensional disturbances (3/3z = 0), substitution of the asymptotic expansions (l .8a) into (1.7), taking into 

account the functional relation between P and A, gives the Benjamin-Ono equation for A [20]. In the three-dimensional 
problem matching of (1.4) and (1.2) taking into account terms of order ~ in (1.2) or direct calculation of the asymptotic 

behavior of  the solutions (1.7) as Y --- oo adds terms O(1/Y) (1.8), which in formal continuation to the wall results in a 

singularity (the functional representation of these terms is given in [20]). This singularity is due to the resonant character of 
the interaction between the wave and fluid particles in the domain II, the drift velocity of the particles being of the same order 

e as the characteristic wave velocity. 

In essence, the domain II is a nonlinear critical wall flow layer, which is generated by a slow wave propagating in the 
main flow. In the two-dimensional theory the equations of the principal approximation do not involve the profile curvature of 

the primary flow in the domain II, so that the vorticity remains constant in the domain. In the three-dimensional problem the 
compression and dilation of vortex tubes enters the picture, generating vorticity disturbances even when the vorticity of the 

primary flow is constant. Resonance disturbances of the particle trajectories are responsible for the appearance of the 
disturbance peak of the vorticity components with respect to x and z in the domain II, which achieve values O(1) in the 

nonlinear regime. The asymptotic expansions of the solution of (1.7) as Y --, oo no longer coincide with it in the whole domain 

II, and a single evolution equation can no longer be written for A [20]. 

The generation of  vorticity disturbances in the resonance domain II plays an important role in the flow dynamics, since 

it produces three-dimensional nonlinear instability. Resonant nonlinear instability in an inviscid flow with a piecewise linear 

velocity profile was noted in [27]. Analogous solution can be constructed for the problem (1.7) and (1.8) using the expansion 
in a small disturbance amplitude. Linearizing Eqs. (1.7) with respect to small disturbances of the velocity of the primary flow 

(V~ 1) = UoY) and considering the solutions as three-dimensional waves - exp( ikx  + ihz - -  ikc~'), one can show that the phase 

velocity is c = (1/UO k ~  § h 2 . With hl /k 1 = ~ the condition of resonance of a symmetric pair of oblique waves (k 1, + h  I) 
with a two-dimensional wave (2k 1, 0) is held. This resonance results in a degenerate nonlinear instability when the amplitude 
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of the two-dimensional wave is constant, whereas oblique waves grow exponentially [27]. The estimates show that the 

exponential growth of the oblique waves is not continued up to the saturation stage (probably, there is an interval of  their 

"explosive" growth [27]). 

The existence of nonlinear instability in a viscous flow has long been known [4-6]. The similarity of the processes of 

nonlinear development of  the three-dimensional structures in viscous and ideal flows observed in numerical simulation [11, 13] 

can be attributed to the presence of instability in an inviscid flow. From the viewpoint of  a general wave theory this type of 

instability can be classified as negative nonlinear Landau absorption, since its existence is concerned with the growth of  kinetic 

energy of wave disturbance owing to its nondissipative resonant interaction with the medium. One can assume that nonresonant 

nonlinear instability, similar to that found numerically in [28] for a viscous flow, is also possible in an inviscid flow. A "rapid" 

transition toward turbulence in a boundary layer was studied in this paper with the introduction of a disturbance as an arbitrary 

symmetric pair of oblique harmonics in a flow. The transition was accelerated by eliminating the stage of slow evolution of 

two-dimensional instability. 

2. Lagrangian Coordinates for Resonant Particles. To elucidate qualitative features of  the behavior of the 

disturbances in the resonance domain II, it is convenient to transform to Lagrangian coordinates in (1.7). We define the 

Lagrangian variables ~, 7, and ~" as the coordinates of fluid particles x, Y, and z at r = 0. Setting the characteristic disturbance 

wave numbers along the x and the z axes equal to k 1 and h 1, we introduce the normalized variables: 

(~,~) = k~(~,r (e , ( )  = h~(~,r 

U~ 2 k2 V~ 2 
( fl, ~', A ) = -~l ( rh Y, A ), ~ = -~  r, P = --~I P, 

(u,~) = U:~:VP) c~, h~U~vo} 
k--[~ I ,, ~ = k~ "3 �9 

(2. l) 
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Unless specified otherwise, the bar over the normalized variables is omitted from now on. Then Eqs. (1.7) have the form 

dz du OP dz dw 2 cqP 
d--~ = u ,  d'--~ = Ox' dr = w, ~rr = - 7  -b-~z' (2.2) 

where "t = h l /kp The fn:st two equations in the left-hand side of (2.2) should be considered to define the x- and z- components 

of  the trajectories of  fluid particles within the given order of accuracy of  specification of  the velocities. Equations (2.2) show 

that the motion of the fluid particles in projection onto the x, z plane is autonomous (does not depend explicitly on their vertical 

displacement) and is similar to the motion of  point masses in potential field. The horizontal components of the motion govern 

the vertical displacement of  the particles via the continuity equation, which can be written 

K OY . OY K OY 1"~" +/ (2- f f~  + a ' ~  " = 1 -  
(2.3) 

Here K 1 = z~x~. - -  zl.x~; K 2 = z ~  - -  z~x~-; K 3 = z~x~ - -  z~x/i. If instability develops from very small initial disturbances 

and the case I A I > > ] A(x, z, 0) I is considered, the initial conditions corresponding to undisturbed flow can be taken for the 

particles 

x ( 0 ) = ~ ,  z ( 0 ) = ( ,  u ( 0 ) = r / ,  w ( 0 ) = 0 .  (2.4) 

The initial disturbances can be specified in another way by including in (2.2) external action in an explicit form (by introducing 

an addition to P in (1.5)) in (2.2). Equation (2.3) is solved with the initial condition Y = 0 at 71 = 0. Conditions (1.8a) take 

the form u --, Y + A, w ---- 0 as Y ~ oo and actually describe A in terms of the variable P, thus closing the system of equations 

A together with (1.5). 
A system of equations similar to (2.2) and (2.3) was studied in [29, 30] in solving the problem of the evolution of a 

"flat eddy" in a boundary layer. In [29] separation into domains with respect to y was not carried out, and the pressure was 

taken into account within the context of  perturbation theory as a factor correcting the trajectories in free flight out of  the 

particles. Some general properties of  the solutions (2.3) mentioned in [29, 30] will be used below. 

The characteristics of  the quasilinear equation (2.3) for Y are given by the system of equations [30] 

d~ K1, do K2, d( K3. (2.5) 
dY dY dY 

This family of characteristics can be parameterized by the values of the Lagrangian coordinates G0 and ~'0 of the particles on 

the plane Y = ~7 = 0. Calculating the increments dx and dz with account of  (2.5), one can show that the values of x and z 

remain invariant along the characteristics. In this case the derivative d/dY in (2.5) coincides with the partial derivative with 

respect to Y when x and z are fLxed [29]. From (2.5) it is obvious that at those points where K 1 = K 2 = K 3 = 0 an infinity 

strong tension of the initial fluid element along Y emerges, and hence a singularity of  the ascent of the fluid particles can occur 

[29]. 
3. Formation of  Three-Dimensional Vortex Structures. In the present paper the solutions of the problem stated in 

Section 2 are analyzed. The analysis is intended to predict principal tendencies of  nonlinear evolution of three-dimensional 

periodical disturbances at the stage of  saturation of nonlinear instability. 

Let us assume that small initial disturbance is of  the form of a symmetric pair of  oblique waves with wave vectors (k 1, 

+_hi), and one of the two types of  instability mentioned in Section 1 is realized. Then as the instability enters the saturation 

stage the field A can be represented as (variables are normalized in accordance with (2.1)) A = 2A0(r) cos(x - -  cr) cos z (c 

= ~ , A o is the amplitude function). In this case the equation for the pressure is 

P = 2Bo(r) cos(z - cr) cos z, (3.1) 

where B 0 = Ao/1~+72 . Unidirectional energy exchange between the central flow and the waves, which ceases as the 

instability is saturated, is characteristic of  the stage of weak nonlinearity. According to the normalizations of Sections 1 and 

2, when the flow regime with strong nonlinearity is realized in the domain II, the inverse rise time of  the waves is comparable 
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to their frequency c - 1 in the linear problem. When the growth rate of  the waves approaches this value, the growth of  the 

fundamental harmonics (3.1) terminates and one can take B o = const - 1 .  In qualitative analysis the value const remains 

indeterminate and is a free parameter of  the problem. It should be emphasized that the two-harmonic approximation for pressure 

(3.1) is used only to determine the trajectories of  fluid particles. The total field A and pressure P in this model are found from 

the condition for matching with the solution in the domain I and emerge as strongly anharmonic functions of  x and z at the 

instability saturation stage (see below). In this case it is assumed that a leading part in the formation of  the vortex structure 

in the domain II is played by the pressure field (3.1) instead of the pressure variation due to the evolution of  the structure. 

We seek a solution of  the system (2.2) and (3. I) with B 0 = const as a perturbation series in the small evolution time 

z: x = ~ + ~z + x (2) + . . . .  z = ~" + z (2) + . . . .  where x(2), z(2) - r 2, etc. Applying the initial conditions (2.4), we obtain 

to within terms - r  2 the expressions 

z = ~ + ,77-+ Bor2 ro,~,/[r si,,(~ + O) - r  cos(~ + 0)], 

z = ( + 72Bo~ -~ .~i,, ; [ , ( 0 )  sin(~ + 0) + r  cos(~ + 0)1. 
(3.2) 

where 0 = (7 / - -  c)r; ev = 2(cos 0 - -  1 + 0 sin 0)/02; �9 = 2(sin 0 - -  0 cos 0)/02. Functions (I, and ,I, are shown in Fig. 

2. 

Let us use the analytic representation (3.2) to find the right-hand sides of (2.5). It shouM be emphasized that the 

formation of a nonlinear disturbance is determined by resonant particles (in the vicinity of the principal maximum of the 

function q01) in Fig. 2), the trajectories of the particles are the most affected by the wave field. 

With the above given initial disturbances, the projection of  the particle trajectories onto the (x, z) plane enjoy rigorous 

properties of  periodicity and symmetry (like in [17]). Mirror symmetry with respect to the planes z = ~rn (n is an integer) as 

well as the symmetry of  the checkerboard type takes place and are manifested in the invariance of the pattern of trajectories 

under simultaneous translation along x and z by the half-period ~r. The planes z = 7rn are material surfaces at which the 

functions KI,2. 3 take the form 

K ,  = - z < x  n, K2  = z<x~, K a = 0 .  (3.3) 

It follows from (3.3) that Kl,2. 3 = 0 when Oz/0~" = 0. Within the framework of  approximation (3.2) this condition holds for 

the first time on the resonance surface 7/ = c at the points of intersection of  the material lines ~ = (2n + 1)Tr and ~ = 2nTr 

with the symmetry planes ~" = 2mTr and ~" = (2m + 1)Tr, respectively (m and n are integers). This occurs at the time r = r ~  

- 1 / ' / B ~ -  0 . It should be noted that the projections of the material lines ~ = nTr, ;7 = c onto the plane x, z remain straight 

at all times. As was noted in Section 2, at the time r = too a singular ascent of  fluid particles along Y arises at the points 

mentioned. Taking into account the behavior of the functions ~ and a / i n  Fig. 2, we find the half-width A c of  the resonance 

layer of particles with respect to 7/from the condition t9 -~ Acro, = ~r. We use A c below as a free parameter,  expressing the 

wave amplitude in terms of  it: B 0 = (Ac/Tr3,) 2. For A c = c the critical layer formed by the pressure field (3.1) encompasses 

the whole domain from the resonance level Y = c to the wall as the instability enters the saturation stage. 

Figure 3 shows instantaneous (time-freeze) plots of the projections of  the material curves ~ = c ,  ~ = 0.2(n - -  1)~r (n 

= 1 . . . . .  11) onto the plane x '  = (x - -  cr)/Tr, z '  = z/Tr for .), = 1, A c = 0.4c,  and ~ = 0.5to. (a); ~ = to.  (b) (here we 

reinstate the bar over normalized variables (2.1)). In this statement of the problem the material lines clearly coincide with the 

vortex lines of  the flow. The line patterns in Fig. 3 should be continued periodically by successive x '  and z '  translations with 

period 2. It is evident that as r --, r : . ,  the vortex lines acquire lambda-shaped kinks with tips focused at the points of  singular 

ascent of the fluid particles. 

To justify the above approach, we have plotted instantaneous projections of the material lines based on the numerical 

solution of Eqs. (2.2) and (3.1) with B 0 = const. We obtained projections close to those shown in Fig. 3 with an insignificant 

(less than 10%) difference in the formation time of  the singularity. Hence it follows that the formulas (3.2) derived by the 

perturbation method for small r provide a qualitatively correct description of the behavior of  complete solution of Eqs. (2.2) 

with the pressure (3.1) until the derivative z l- vanishes. 
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We now show that the disturbances of  the particle projections in approximation (3.2) can be matched with the trajectory 

disturbances emerging in the growth stage of  the waves. To f'md the disturbances of the trajectories in the small nonlinearity 

stage, we set B o = ~ exp(vr) in (3.1) (/~ < <  1 is a small parameter, and v > 0 is the local growth rate of  the wave) and 

construct a Solution of  (2.2) using perturbation theory for tL. Assuming v = const, to within terms of the order ~ we have 

z = ~ + ,m + 2Bo, '-2 co~ r si~(( + 0) - ~(p) co~ff + ,~)1, 

z = ~ + 2Bo72v -2 sin ~[~(p) sin(~ + 0) + ~(p) cos(~ + 0)], 
(3.4) 

where p = 01 - -  c)/v; ~ = (1 - -  p2)/(1 + 02)2; {t = 2o/(1 + 02) 2. It should be noted that the pairs of  functions O, q, and 

~1/, {, are structurally similar in the vicinity of  resonance. Equating Bo(r) in (3.4) to the value B 0 = const in (3.2) and matching 

the disturbance amplitudes of the particle trajectories in (3.2) and (3.4), we obtain v = ~-/~" at the resonance level ~ = c. 

In this case the resonance width with respect to ~/, determined by the principal maxima of  the functions r and ~b, is 

approximately the same. It is natural to take the matching moment r comparable to the value to., but not too close to it. For 

example, with r = (l/2)ro. we have v = 23"12B o - 1, as it must when the instability passes iffto the saturation stage. Thus, 

formulas (3.2) account for qualitative behavior features of horizontal projections of the flow vortex lines when the instability 

of  initially small disturbances is saturated. 

Before describing the results for the three-dimensional flow of  calculations we write the combined solution of  the 

problem in the domains I and II. For the total longitudinal velocity the solution can be written (reinstating the bar over the 

normalized variables) 

~kl t ~ = u(v) + b-~ u (y)[~(~, y,~,~) - ~. (3.5) 

It can be shown that expression (1.6) for the deviation of  material surface in the domain I coincides with the asymptotic value 

in the domain II as Yo = Yo/e ~ c o  Therefore, the combined solution for the total coordinate y of points of the material 

surface takes the form 

ekl g ( g ,  Y'0, g, 7), (3.6) 

where Yo = (Vg/Y)Y0 (see (2.1)). When ~/o = ~ material (vortex), lines lying in the plane ~ = const are also on the surface 

(3.6). Therefore, formula (3.6) can be used to calculate the lift of  fluid particles at these lines. 

Where spindle-shaped dips occur in the oscillograms of  longitudinal velocity, values of  the wave number (related to 

1/6) ek 1 - 0.7 and the phase velocity of  the waves (related to U~.) ec -- 0.38 have occurred in experiments [2]. In this case 

the critical level is at the height y = 0.24 (it should be noted that U o --- 1.6 for the Blasins profile). In the formal application 

of the asymptotic solution with this phase velocity a significant part of  the boundary layer belongs to the domain II. In the 

context of  the asymptotic theory, according to Section 1, ec = (ek 1/U~ t l +3'2 . Presented below are the results of calculations 

carried out for 3' = 1, ec = 0.3 (ek t = 0.34) and A e = 0.4c. The velocity profile is approximated in (3.3) by a function close 

to the Blasius profile: U = 0.4y 6 - -  y4 + 1.6y for 0 < y -< 1, and U = 1 for y >_ 1. It should be noted that analogous 

results are obtained for other values of  the parameters and with neglect of the dispersion relation of the phase velocity to the 

wave number. 

The calculation results for several principal characteristics of the flow field are presented in Figs. 4-6. Figure 4 shows 

an instantaneous plot of  the system of three-dimensional vortex lines existing at the initial instant at the resonance level ~ = 

c(~ = 0, 27r(n - -  1), n = 1 . . . . .  6, x' and z '  are the same as in Fig. 3). The graph is plotted at r = 0.95r~, within two periods 

in ~'. In the calculations the initial particle coordinates ~, ~', and ~ were taken as initial values, and their coordinates x, z were 

calculated for the time 7 from formulas (3.2). The initial particle coordinates G0, ~'o (which have the same coordinates x, z at 

the moment r)  in the plane ~ = 0 werefound by solving (3.2) by iteration methods. The unknown value of Y was determined 

by integrating (2.5) numerically from Y = 0 to the Y at which the initial value ~ was achieved. 
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Figure 5 shows the dependences of the total longitudinal velocity v 1 on ~ at different levels with respect to y in the 

symmetry plane ~ = 0 at ~ = 0.97r~. (curves 1-6 correspond to y = 0.1; 0.19; 0.4; 0.6; 0.7; 0.8). Figure 6 shows a sequence 

of local profiles of the longitudinal velocity at u = 0.94r~. (curves 1-4 correspond to x = 0.5(n - -  1)a-, n = 1-4). In plotting 
the curves in Figs. 5 and 6, the system (2.5) was integrated with allowance for expressions (3.3) for predetermined values of 

The qualitative features of the three-dimensional flow presented in Figs. 4-6 are due to the onset of domains with large 

vertical elongation of the material elements because of their transverse compression during autonomous motion of the particle 

system in the given pressure field (3.1). This effect results in local ejections of low-velocity fluid in upper layers of the flOW, 
which are clearly seen in Fig. 4. A pattern of material lines similar to that shown in Fig. 4 was obtained in [15] from direct 

numerical simulation of the transition. As a result of the ascent of the low-velocity fluid and the increase in its drift velocity 
by the primary flow at high levels along the y axis, spindle-shaped dips are formed in the longitudinal velocity oscillations along 

the x axis (Fig. 5). These processes are responsible for the formation of instantaneous longitudinal velocity profiles with 

inflection points (Fig. 6). 
To compare the results with measured data for the time dependence of the longitudinal velocity at a fixed point, one 

can use the convection hypothesis, according to which x 1 is substituted for - U c t  (where U e is the disturbance drift velocity). 

Then one can see that the curves in Figs. 5 and 6 are in good qualitative agreement with the experimental data (see [Figs. 3h, 
and 1 la-d in 2]). We can thus trace the transition from oscillations with overcrested fronts at the level of the critical layer (y 

= 0.19 in Fig. 5) to the spindle-shaped dips at higher levels. The amplitude of the dips can make up a significant part of the 
freestream velocity. The occurrence of oscillograms with velocity reversal at y > 1 is probably due to the formation of a thin 
vortex core during the elongation of vortex tubes in the domains of local ascent of the particles (this tendency is observed in 
Fig. 4). The vortex core amplifies the velocity defect at the dips at high levels along y, but its description is beyond the limits 

of the fiat-eddy approximation. 
In keeping with the matching conditions derived in Section 2, we have u - -  Y ~ A as Y ~ oo. The calculations show 

that the difference u - -  Y actually tends to a fixed function of x. As is clear from Fig. 5, the field A and, therefore, the 
normalized pressure P become nonsinusoidal functions of ~ (attenuation of the oscillations as y increases is due to the action 

of the factor U' in formula (3.5)). This suggests the onset of self-consistent pressure, which probably prevents the formation 
of a singularity of the particles ascent. The latter is indirectly justified by the results of model calculations described in [29, 
30] where the flat-eddy singularity was eliminated with allowance for the pressure gradients induced by the flat-eddy. In this 
case longitudinal velocity oscillations set in, which in reference to our model can be considered as an analog of multiplication 

of the number of dips (which is also observed in the transition experiments [2]). It should be added that the patterns of 

projections of the vortex lines in Fig. 3 are in qualitative agreement with the results of direct numerical simulation of the 

evolution of a three-dimensional disturbance in an ideal flow [11]. 
Thus, the asymptotic model for the generation of three-dimensional vortex structures at saturation of nonlinear 

instability in the boundary layer describes a number of qualitative features of the flow field observed in the final stage of 
transition in laboratory experiments and numerical simulation. In conclusion we call attention to the principal distinction 

between the processes of formation of three-dimensional and two-dimensional structures in an ideal flow. Three-dimensional 
structures are formed as a result of the saturation of nonlinear instability, while the two-dimensional problem for nonlinear 

disturbances in the absence of viscosity is conservative. Application of the model described in Section 3 to the two-dimensional 

problem results in _overcresting of the slopes of an originally sinusoidal disturbance, consistent with the solution of the 
Benjamin-Ono equation for the function A with elimination of the pressure term (the term containing the Hilbert transform) 
from it. In the two-dimensional problem without regard for self-consistent pressure, a singularity of the field gradient A arises, 

whereas in the three-dimensional problem, the singularity is in the field itself. Self-consistent pressure essentially influences 

the shape of two-dimensional nonlinear waves, while for three-dimensional disturbances, which in the absence of self-consistent 

pressure have a symmetric solitonlike form, its role is not likely to be crucial in this sense. Therefore, the model in question 

fails to provide good results when a sufficiently strong two-dimensional wave is included in the pressure expression (3.1). The 

generation of three-dimensional structures without growth of the two-dimensional wave, which is characteristic of the inviscid 
problem, is also possible for a viscous flow exhibiting a rapid transition to turbulence. 
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